Studies on Explosives
 I. The Crystal Structure of Copper(II) Azide, Catena-diazidocopper(II)

By Rune Söderquist
Division for Explosives, Research Institute of National Defence (FOA), Sundbyberg 4, Sweden and Department of Inorganic Chemistry, Royal Institute of Technology (KTH), Stockholm 70, Sweden

(Received 24 July 1967)

Abstract

The crystal structure of orthorhombic copper(II) azide has been determined by single-crystal X-ray diffraction methods using complete, visually estimated, intensity data within the $\mathrm{Cu} K \alpha$ sphere and with space group Pbnm. The refined lattice parameters are at $25^{\circ} \mathrm{C} a=9.084 \pm 0.003, b=13.454 \pm 0.002$, $c=3.079 \pm 0.001 \AA$ and the unit cell contains four $\mathrm{Cu}\left(\mathrm{N}_{3}\right)_{2}$. The trial structure was refined by the method of full-matrix least-squares to a final residual of 0.059 . The structure consists of planar diazidocopper(II), $\left[\mathrm{Cu}\left(\mathrm{N}_{3}\right)_{2}\right]_{n}$, chain molecules packed laterally with long $\mathrm{Cu}-\mathrm{N}$ distances and distorted octahedral coordination around each copper atom. The $\mathrm{Cu}-\mathrm{N}$ distances are close to $2.00 \AA$ within the chains and the $\mathrm{N}-\mathrm{N}$ bonds in the azido groups are found to differ significantly in length.

Introduction

Copper(II) azide, $\mathrm{Cu}\left(\mathrm{N}_{3}\right)_{2}$, was first prepared by Curtius $\&$ Rissom (1898) and the lattice parameters were determined by Straumanis \& Cirulis (1943). At the Research Institute of National Defence (FOA) in Sweden the system $\mathrm{Cu}\left(\mathrm{N}_{3}\right)_{2}-\mathrm{CuO}-\mathrm{H}_{2} \mathrm{O}$ has been investigated by Lamnevik \& Söderquist (1967). Several of the solid phases in this system are explosive corrosion products formed on copper and copper alloys at various partial pressures of hydrogen azide. Copper(II) azide is the stable compound at partial pressures higher than 0.24 torr at $25^{\circ} \mathrm{C}$, whereas at lower partial pressures hydrolysis to hydroxo compounds of $\mathrm{Cu}\left(\mathrm{N}_{3}\right)_{2}$ occurs.
Copper(II) azide is a primary explosive, extremely sensitive to impact, friction and, especially, electrical fields. The electrical sensitivity is so high that the compound will detonate at discharge energies in the microjoule range (Lamnevik, 1966). This indicates that the
compound has small activation energies for thermal and electrical breakdown which may be related to the crystal structure. The extreme sensitivity of $\mathrm{Cu}\left(\mathrm{N}_{3}\right)_{2}$ seems, however, not to be caused by a polarity of the crystals as suggested for many other explosives by Maycock \& Grabenstein (1966).

Experimental

Crystals of copper(II) azide suitable for single-crystal optical and X-ray work were prepared by two different methods, either according to Straumanis \& Cirulis (1943) or by a diffusion method. In the latter method $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ (s) and $\mathrm{NaN}_{3}(\mathrm{~s})$ contained in small beakers were allowed to mix by diffusion in a solution of 1% hydrogen acetate in water. Both preparation methods gave long prismatic greenish black needles, which analysed as $\mathrm{Cu}\left(\mathrm{N}_{3}\right)_{2}, \mathrm{Cu}: 42 \cdot 9_{2} \%$ (calc. $43 \cdot 06 \%$) from ethylenediaminetetra-acetate titrations, and N : $56 \cdot 43 \%$ (calc. $56 \cdot 94 \%$) from $\mathrm{Ce}^{\mathrm{IV}}$ titrations.

Fig.1. Orthographic projections of the common habit of well-crystallized orthorhombic $\mathrm{Cu}\left(\mathrm{N}_{3}\right)_{2}$. The unit cell and pleochroism are indicated.

The crystals are stable in air and mostly grow with a few well-developed faces of holohedral symmetry (Fig. 1). Occasionally minute faces and striations along [001] occur which probably prevented Straumanis \& Cirulis (1943) from identifying the main crystal forms. There are also perfect cleavages along the needle axis which cause the crystals to split at the slightest pressure into a bundle of thin fibres looking much like asbestos. $\mathrm{Cu}\left(\mathrm{N}_{3}\right)_{2}$ shows extremely strong pleochroism, being opaque along [001] but transparent with light green transmission in the (001) plane. This property explains to some extent the diversity in the description of the colour of this compound, ranging from green or brown to black.

The X-ray pattern obtained from $\mathrm{Cu}\left(\mathrm{N}_{3}\right)_{2}$ has mmm symmetry, and the orientation of the unit-cell axes within the crystal is shown in Fig. 1. The lattice parameters (Table 1) confirm those given by Straumanis \& Cirulis (1943) and 32 single-indexed diffraction lines were refined by the method of least-squares (unit weights) using powder data obtained with a HäggGuinier focusing camera (Table 2). 408 of a total of 526 recorded independent intensities (96% of all possible within the $\mathrm{Cu} K \alpha$ sphere) were above background and measured by visual comparison with calibrated scales from non-integrated Weissenberg equi-inclination ($\mu_{\max }=30^{\circ}$) multiple-films taken around all three principal axes ($n k l, n=0-5$; hnl, $n=0-2 ; h k n, n=0-2$).

Table 1. Some crystal data on orthorhombic

 $\mathrm{Cu}\left(\mathrm{N}_{3}\right)_{2}$ at $25^{\circ} \mathrm{C}$Cell constants

$$
\begin{aligned}
& a \pm \sigma=9 \cdot 084 \pm 0.003 \AA \\
& b \pm \sigma=13.454 \pm 0.002 \\
& c \pm \sigma=3.079 \pm 0.001
\end{aligned}
$$

$$
V \pm \sigma=376 \cdot 3 \pm 0 \cdot 3 \AA^{3}
$$

Densities

$$
\begin{aligned}
& \varrho_{o}=2 \cdot 58 \mathrm{g.cm}^{-3} \text { (flotation in } 1 \text {-bromonaphthalene- } \\
& \begin{array}{l}
\text { diiodomethane mixtures) }
\end{array} \varrho_{c}=2 \cdot 604 \mathrm{~g} . \mathrm{cm}^{-3}, Z=4 \mathrm{Cu}\left(\mathrm{~N}_{3}\right)_{2}, \mathrm{Cu}\left(\mathrm{~N}_{3}\right)_{2}=147 \cdot 6 \mathrm{~g} \cdot \mathrm{~mole}^{-1} .
\end{aligned}
$$

Diffraction data

$$
\begin{aligned}
& \mu=70 \cdot 5 \mathrm{~cm}^{-1}(\mathrm{Cu} \mathrm{~K} \mathrm{\alpha}) \\
& F(000)=284 \text { electrons }
\end{aligned}
$$

Observed reflexions: $h k l$ no conditions

$$
\begin{array}{ll}
0 k l & k=2 n \\
h 0 l & h+l=2 n \\
h k 0 & \text { no conditions }
\end{array}
$$

Space groups: Pbnm (no. 62, 010/001/100 transforms to standard setting)
$P b n 2_{1}$ (no. 33, 010/100/00T transforms to standard setting)
Crystal morphology
Orthorhombic holohedral
$a: b: c=0 \cdot 6752: 1: 0 \cdot 2289$
Perfect cleavage along [001]
Crystal optics
Strong pleochroism, opaque along [001], light green in (001)

Piezoelectricity
Negative (static and Giebe \& Scheibe method)

Table 2. X-ray powder diffraction data of orthorhombic $\mathrm{Cu}\left(\mathrm{N}_{3}\right)_{2}$

Hägg-Guinier focusing camera (80 mm diameter, quartz monochromator) with $\lambda\left(\mathrm{Cu} K \alpha_{1}\right)=1 \cdot 54051 \AA$ radiation and $\mathrm{KCl}\left(a=6 \cdot 29294 \AA\right.$ at $\left.25^{\circ} \mathrm{C}\right)$ as internal standard.

$\begin{gathered} d_{o} \\ (\AA) \end{gathered}$	$I_{\text {rel }}$	hkl	$\begin{gathered} d_{0}-2 \\ \left(\AA^{-2}\right) \end{gathered}$	$\begin{gathered} d_{c}-2 \\ \left(\AA^{-2}\right) \end{gathered}$
7.524	vs	110	0.01766	0.01765
$6 \cdot 725$	w	020	$0 \cdot 02211$	0.02210
$5 \cdot 406$	m	120	$0 \cdot 03422$	0.03422
4.535	$v w$	200	0.04863	$0 \cdot 04848$
$4 \cdot 307$	$v w$	210	0.05390	0.05400
4.023	w	130	0.06179	0.06184
$3 \cdot 764$	vw	220	0.07059	0.07057
$3 \cdot 365$	$v w$	040	$0 \cdot 08830$	0.08830
$3 \cdot 190$	s	230	0.09823	0.09820
2.915	$v w$	101	$0 \cdot 11770$	$0 \cdot 11762$
$2 \cdot 800$	s	021	$0 \cdot 12753$	$0 \cdot 12759$
2.762	w	320	$0 \cdot 13110$	$0 \cdot 13118$
2.703	w	240	$0 \cdot 13688$	$0 \cdot 13688$
2.676	m	121	$0 \cdot 13970$	$0 \cdot 13971$
2.582	${ }^{\boldsymbol{w}}$	150	0.15001	$0 \cdot 15024$
$2 \cdot 504$	w	211	$0 \cdot 15943$	$0 \cdot 15950$
2.445	m	131	0-16722	$0 \cdot 16733$
2.272	w	f 041	0. 19377	$0 \cdot 19390$
	w	400	- 19377	$0 \cdot 19392$
2.249	$v w$	340	$0 \cdot 19766$	$0 \cdot 19747$
$2 \cdot 203$	w	141	$0 \cdot 20599$	$0 \cdot 20602$
$2 \cdot 160$	vw	301	$0 \cdot 21433$	$0 \cdot 21458$
2.031	$v w$	241	$0 \cdot 24233$	$0 \cdot 24237$
2.012	$v w$	260	$0 \cdot 24700$	$0 \cdot 24736$
1.979	$v w$	151	$0 \cdot 25573$	$0 \cdot 25574$
1.851	w	251	$0 \cdot 29195$	$0 \cdot 29220$
1.802	$v w$	$\{360$	$0 \cdot 30808$	$0 \cdot 30796$
		510	$0 \cdot 30808$	$0 \cdot 30853$
1.778	$v w$	161	$0 \cdot 31647$	$0 \cdot 31650$
$1 \cdot 682$	$v w$	$\{261$	0.35330	$0 \cdot 35286$
		080	0.35330	$0 \cdot 35357$
1.606	w	171	$0 \cdot 38789$	$0 \cdot 38832$
$1 \cdot 555$		$\{361$	0.41344	0.41346
1.555	vw	\{ 511	$0 \cdot 41344$	$0 \cdot 41401$
1.540	m	002	$0 \cdot 42177$	$0 \cdot 42198$
1.508	w	112	$0 \cdot 43987$	$0 \cdot 43963$
$1 \cdot 478$	$v w$	531	$0 \cdot 45758$	$0 \cdot 45820$
1.387	vw	232	0.51973	$0 \cdot 52018$
1.344	vw	322	0.55320	$0 \cdot 55317$
1.322	vw	152	$0 \cdot 57220$	$0 \cdot 57223$

The crystals disintegrate rapidly in X-ray radiation, resulting in fading of the intensities on repeated exposure. Thus new crystals were mounted for each reciprocal layer. Corrections for the Lorentz and polarization effects were applied, and the $h k 3$ reflexions were brought to the same level by cross-correlation. About 85% of the intensities were collected around [001] with rod-shaped crystals of diameters less than 0.04 mm giving a transmission correction not exceeding 5%. It was thus not considered necessary to correct all the crystals used for absorption since errors due to disintegration may exceed the absorption effect. The conditions for observed reflexions (Table 1) are in accordance with space groups $P b n 2_{1}$ (no.33) and Pbnm (no. 62) in International Tables for X-ray Crystallography (1952).

Inspection of the X-ray photographs reveals that $h k l$ reflexions differing only by $2 n$ in l have nearly uni-
form intensity apart from the normal decline with increasing θ. This strongly suggests location of the four $\mathrm{Cu}\left(\mathrm{N}_{3}\right)_{2}$ units on mirror planes at $z= \pm \frac{1}{4}$, thus transforming the general fourfold position in $\mathrm{Pbn} 2_{1}$ to the fourfold special position with symmetry m in Pbnm. For this reason and because of the apparent holohedry of the crystals, space group Pbnm was adopted during the structure determination. The position of the copper atom was easily deduced from the Patterson projection on (001). Two successive Fourier syntheses based on $F_{\text {rel }}$ enabled the x and y coordinates of all six nitrogen atoms to be determined. The z coordinates ($\pm \frac{1}{4}$) were assigned to give reasonable $\mathrm{Cu}-\mathrm{N}$ distances of about $2.0 \AA$ and linear N_{3} groups. These positions were checked on a Patterson projection on (100). A structure factor calculation at this stage, including all measured reflexions and approximate temperature factors resulted in a discrepancy index, defined throughout as

$$
R=\Sigma| | F_{o}\left|-\left|F_{c}\right|\right| / \Sigma\left|F_{o}\right|,
$$

of 0.26 .
The structure was refined by a full-matrix leastsquares analysis minimizing the function $w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ and using only the 408 reflexions above background. These were given unit weight for scaled $F_{o} \leq 4 F_{\min }=20$ electrons and for reflexions with $F_{0}>20$ electrons $V w$ was set equal to $20 / F_{0}$. Neutral atomic scattering factors, without dispersion corrections, were taken from International Tables for X-ray Crystallography (1962). The calculations were carried out on an IBM 7090 computer, with a set of programs written or adapted by Stewart (1964).

The structure was first refined by six cycles in the isotropic mode when the shifts had reached 0.01σ for all parameters and $R=0.082$. A three-dimensional Fourier synthesis with ΔF values as amplitudes showed no evidence ($\Delta \varrho$ approximately zero around all atoms)
of displacement of any of the atoms from the mirror planes as would be expected if the structure were noncentrosymmetric. In the three-dimensional electron density one of the terminal nitrogen atoms [$\mathrm{N}(6)$, see below] was slightly smeared in the $x y$ plane as compared with the others, indicating stronger thermal motion. Five more cycles with individual anisotropic temperature factors applied to all atoms were calculated refining a total of 43 parameters (14 structural and 28 temperature factor parameters and one scale factor). R decreased to a final value of 0.059 and the shifts of all the parameters were negligible. A statistical test, using an approximate R-factor ratio (Hamilton, 1965), of the physical significance of introducing anisotropic refinement was definitely positive, well above the $99 \cdot 5 \%$ level. Averages of $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ in groups of increasing F_{o} and $\sin \theta / \lambda$ justified the weighting scheme used and minor changes in the weights produced little effect; this indicates that the errors in the data are mostly of random nature. No reflexions seemed to be affected by extinction; this may be ascribed to the fibrous mosaic structure of $\mathrm{Cu}\left(\mathrm{N}_{3}\right)_{2}$ proposed by Straumanis \& Cirulis (1943).

Discussion

The configuration, bond lengths and angles (Fig. 2 and Table 5) of both the N_{3} groups (almost linear) and the copper coordination (octahedral $4+1+1$) found in $\mathrm{Cu}\left(\mathrm{N}_{3}\right)_{2}$ agree well with similar values in related structures (Agrell, 1966). The structure can be considered as being built from infinite, almost planar chain molecules of composition $\mathrm{Cu}\left(\mathrm{N}_{3}\right)_{2}$, running along [001] in the crystal. The two crystallographically independent N_{3} groups in the repeat unit of a chain coordinate the copper atom by one terminal nitrogen each, the copper atom being surrounded by four N_{3} ligands in a rectangular plane. The two $\mathrm{Cu}-\mathrm{N}$ distances are both very

Fig.2. Perspective view of the octahedral environment of a copper atom in $\mathrm{Cu}\left(\mathrm{N}_{3}\right)_{2}$.
close to $2 \cdot 00 \AA$ and the interbond angle is $79 \cdot 2^{\circ}$. The axes of the N_{3} groups are slightly turned in (001) to fall out of the coordination plane and make angles of 129.3 and $126 \cdot 0^{\circ}$ with the $\mathrm{Cu}-\mathrm{N}$ bonds (Fig.2); these values lie in the region reported for other covalently bonded azido groups. This neutral, infinite chain structure of copper(II) azide explains the fibrous cleavage. Copper(II) azide can be considered an azido complex of copper(II), $\left[\mathrm{Cu}\left(\mathrm{N}_{3}\right)_{2}\right]$, suggesting the systematic name catena-diazidocopper(II). There is a relatively short $\mathrm{Cu}-\mathrm{Cu}$ distance, $3.08 \AA$, along the chains. Although no direct $\mathrm{Cu}-\mathrm{Cu}$ bonding is proposed at such distance (Schlueter, Jacobson \& Rundle, 1966), this may, however, result in an increase of the amount of light absorbed in the chain direction, suggesting an explanation of the extremely strong pleochroism observed.

The lateral packing of the chains in $\mathrm{Cu}\left(\mathrm{N}_{3}\right)_{2}$ conforms to the usual pattern of copper(II) compounds, forming distorted octahedral configurations around the copper atom (Wells, 1962). The two azido ligands form, apart from the short intrachain bonds with copper, one long $\mathrm{Cu}-\mathrm{N}$ bond each to a neighbouring chain (Fig.3). Both N_{3} groups are thus three-coordinated to copper but in different ways. The $\mathrm{N}(1)-\mathrm{N}(2)-$ $\mathrm{N}(3)$ group coordinates in both ends; long $\mathrm{Cu}-\mathrm{N}(1)$ distances of $2.54 \AA$ bind the chains to puckered layers in (010) consisting of five-coordinated copper pyramids. These layers are stacked together with the basal planes of the pyramids parallel and connected through $\mathrm{Cu}-\mathrm{N}(4)$ bonds of $2.71 \AA$ across the planes, completing the distorted octahedral surrounding of copper. Thus the $N(4)-N(5)-N(6)$ group uses only $N(4)$ in copper bonding, leaving the opposite nitrogen atom $\mathrm{N}(6)$ with

Table 3. Final observed and calculated structure factors of $\mathrm{Cu}\left(\mathrm{N}_{3}\right)_{2}$
The columns are, $h, 10\left|F_{o}\right|$ and $10 F_{c}$. Unobserved reflexions are marked with an asterisk and have been given F_{o} values corresponding to the estimated minimum observable intensity. They have been omitted from the least-squares refinement.
 nt

Table 4. Mean atomic and thermal parameters of $\mathrm{Cu}\left(\mathrm{N}_{3}\right)_{2}$ after anisotropic refinement Individual atomic temperature factors were refined for all atoms in the form $\exp \left[-\left(h^{2} \beta_{11}+k^{2} \beta_{22}+l^{2} \beta_{33}+2 h k \beta_{12}\right)\right]$,
with one of the principal axes parallel to [001]. $u_{r}=$ r.m.s. amplitude of thermal motion along the r th principal axis. Positional and thermal parameters are multiplied by 10^{4} and standard deviations are given in parentheses. E.s.d.'s of the thermal principal axes are $0.01 \AA$ for the nitrogen atoms and $0.002 \AA$ for Cu .

	x / a	y / b	z / c	β_{11}	β_{22}	β_{33}	β_{12}	u_{1}	u_{2}	u_{3}
N(1)	3305 (13)	1879 (8)	7500	135 (15)	53 (6)	1010 (118)	- 51 (8)	$0.14 \AA$	$0.22 \AA$	$0.29 \AA$
$\mathrm{N}(2)$	4099 (9)	2541 (6)	7500	100 (9)	22 (4)	474 (78)	-6 (6)	$0 \cdot 14$	0.15	0.21
$\mathrm{N}(3)$	4973 (9)	3208 (6)	7500	68 (9)	30 (4)	600 (82)	-24 (5)	$0 \cdot 12$	0.17	0.21
Cu	5803 (1)	3967 (1)	2500	82 (2)	31 (1)	672 (17)	-7 (1)	0.16	$0 \cdot 18$	$0 \cdot 19$
N(4)	6533 (8)	4782 (5)	7500	49 (7)	19 (4)	661 (76)	-7 (4)	$0 \cdot 12$	$0 \cdot 15$	$0 \cdot 18$
N(5)	7619 (10)	5307 (6)	7500	84 (10)	35 (5)	715 (85)	-25 (6)	0.13	$0 \cdot 19$	0.22
N(6)	8561 (18)	5818 (14)	7500	186 (23)	153 (16)	996 (151)	-90 (17)	$0 \cdot 21$	$0 \cdot 22$	0.42

Table 5. Some important interatomic distances and angles in $\mathrm{Cu}\left(\mathrm{N}_{3}\right)_{2}$
Standard deviations are given in parentheses.
Superscript
Atom at

none	$x, \quad y, z$
$\prime \prime$	$\bar{x}, \quad \bar{y}, \frac{1}{2}+z$
$\prime \prime$	z
$\prime \prime$	$\frac{1}{2}-x, \frac{1}{2}+y$,
	$\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z$

with translations with translations with translations with translations

Bonds	$l(\sigma)$
$\mathrm{Cu}-\mathrm{Cu}$	$3 \cdot 079(1) \AA$
$\mathrm{Cu}-\mathrm{Cu}$	$3.497(2)$
$\mathrm{Cu}-\mathrm{N}(3)$	$1.995(5)$
$\mathrm{Cu}-\mathrm{N}(4)$	$2 \cdot 003(4)$
$\mathrm{Cu}-\mathrm{N}\left(1^{\prime \prime \prime}\right)$	$2.542(10)$
$\mathrm{Cu}-\mathrm{N}\left(4^{\prime}\right)$	$2.709(7)$
$\mathrm{N}(1)-\mathrm{N}(2)$	$1.146(13)$
$\mathrm{N}(2)-\mathrm{N}(3)$	$1.199(11)$
$\mathrm{N}(4)-\mathrm{N}(5)$	$1.213(11)$
$\mathrm{N}(5)-\mathrm{N}(6)$	$1.098(16)$
$\mathrm{N}(3)-\mathrm{N}(4)$	$2 \cdot 548(10)$

Bonds	$l(\sigma)$
$\mathrm{N}(1)-\mathrm{N}\left(6^{\prime}\right)$	$3 \cdot 852(22) \AA$
$\mathrm{N}(1)-\mathrm{N}\left(6^{\prime \prime}\right)$	$3 \cdot 185(18)$
$\mathrm{N}(1)-\mathrm{N}\left(3^{\prime \prime \prime}\right)$	$3 \cdot 398(12)$
$\mathrm{N}(1)-\mathrm{N}\left(4^{\prime \prime \prime}\right)$	$3 \cdot 155(10)$
$\mathrm{N}(1)-\mathrm{N}\left(5^{\prime \prime \prime}\right)$	$3 \cdot 378(11)$
$\mathrm{N}(2)-\mathrm{N}\left(5^{\prime}\right)$	$3 \cdot 631(10)$
$\mathrm{N}(2)-\mathrm{N}\left(6^{\prime}\right)$	$3 \cdot 617(20)$
$\mathrm{N}(2)-\mathrm{N}\left(6^{\prime \prime}\right)$	$3 \cdot 145(18)$
$\mathrm{N}(3)-\mathrm{N}\left(4^{\prime}\right)$	$3 \cdot 398(9)$
$\mathrm{N}(3)-\mathrm{N}\left(5^{\prime}\right)$	$3 \cdot 450(12)$
$\mathrm{N}(6)-\mathrm{N}\left(6^{\prime}\right)$	$3 \cdot 750(23)$
$\mathrm{N}(3)-\mathrm{N}(3)$	$3 \cdot 079(1)$

Angles	$\theta(\sigma)$
$\mathrm{Cu}-\mathrm{N}\left(1^{\prime \prime \prime}\right)-\mathrm{N}\left(2^{\prime \prime \prime}\right)$	$155.6(1.0)^{\circ}$
$\mathrm{Cu}-\mathrm{N}(3)-\mathrm{N}(2)$	129.3 (0.2)
$\mathrm{Cu}-\mathrm{N}(4)-\mathrm{N}(5)$	$126 \cdot 0$ (0.3)
$\mathrm{Cu}-\mathrm{N}\left(4^{\prime}\right)-\mathrm{N}\left(5^{\prime}\right)$	$106 \cdot 0$ (0.6)
$\mathrm{N}\left(1^{\prime \prime \prime}\right)-\mathrm{Cu}-\mathrm{N}(3)$	$96 \cdot 3$ (0.3)
$\mathrm{N}\left(1^{\prime \prime \prime}\right)-\mathrm{Cu}-\mathrm{N}(4)$	$87 \cdot 1$ (0.3)
$\mathrm{N}(3)-\mathrm{Cu}-\mathrm{N}(3)$	$101 \cdot 0(0 \cdot 3)$
$\mathrm{N}(3)-\mathrm{Cu}-\mathrm{N}(4)$	$79 \cdot 2$ (0.2)
$\mathrm{N}(3)-\mathrm{Cu}-\mathrm{N}\left(4^{\prime}\right)$	91.2 (0.3)
$\mathrm{N}(4)-\mathrm{Cu}-\mathrm{N}(4)$	$100 \cdot 5(0 \cdot 3)$
$\mathrm{N}(4)-\mathrm{Cu}-\mathrm{N}\left(4^{\prime}\right)$	85.4 (0.2)
$\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{N}(3)$	$177 \cdot 5$ (1-1)
$\mathrm{N}(4)-\mathrm{N}(5)-\mathrm{N}(6)$	$176 \cdot 8(1 \cdot 4)$

van der Waals contacts to the environment. This shows up, as mentioned earlier, in a higher thermal motion of $\mathrm{N}(6)$, and also as a more pronounced asymmetry of the azido group. The nitrogen-nitrogen distances within both independent N_{3} groups are significantly different (see below) and can at least for the most asymmetric group be directly compared with distances found for the organic, covalently bonded azido groups (Gray, 1963). Neither azido group in $\mathrm{Cu}\left(\mathrm{N}_{3}\right)_{2}$ departs significantly from linearity:

$\mathrm{N}(1)$	$\mathrm{N}(2)$	N(3)	N(4)	$\mathrm{N}(5)$	N(6)
$177 \cdot 5 \cdot{ }^{(1 \cdot 1)^{\circ}}$			$176.8(1.4)^{\circ}$		
$1 \cdot 146$ (13) $1 \cdot 199(11)$			1.213 (11) $1.098(16) \AA$		
	(1-				

Taking the long $\mathrm{Cu}-\mathrm{N}$ distances into account the structure can be considered to be built from double chains of linked octahedra sharing edges (Fig. 3). The strings are extended along the c axis and form a distorted version of the double chains present in $\mathrm{NH}_{4}\left[\mathrm{CdCl}_{3}\right]$ (Brasseur \& Pauling, 1938).

An interpretation of the anisotropic parameters of Table 4 has at most only a qualitative meaning. This implies that the largest r.m.s. vibration amplitudes are in the directions of smallest constraints and vice versa. As shown in Fig. 4, both terminal nitrogen atoms $\mathrm{N}(1)$ and $\mathrm{N}(6)$ have their largest r.m.s. amplitudes across the $\mathrm{N}-\mathrm{N}-\mathrm{N}$ axes in (001), that is in directions with no $\mathrm{N}-\mathrm{N}$ or $\mathrm{Cu}-\mathrm{N}$ bonds and with large packing distances between the nitrogen atoms, $3 \cdot 2 \AA$ for $\mathrm{N}(1)$ and $3 \cdot 8 \AA$ for $\mathrm{N}(6)$. The strong bonds within the azido groups

Fig. 3. Perspective view of the crystal structure of $\mathrm{Cu}\left(\mathrm{N}_{3}\right)_{2}$.

Fig.4. Packing of the $\left[\mathrm{Cu}\left(\mathrm{N}_{3}\right)_{2}\right]_{n}$ chains viewed along [001]. Principle axes of thermal motion, referring to Table 4, are indicated.
and an inspection of the thermal ellipsoids suggest that rigid body angular oscillations (or bending motions) make considerable contributions to the mean square displacements of the nitrogen atoms. Similar results have been obtained from anisotropic refinement of the related structure of trans- $\left[\mathrm{Cu}\left(\mathrm{N}_{3}\right)_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]$ (Söderquist, 1967), using mean values of the observed structure factors of Agrell (1966). Considerable contributions to the r.m.s. amplitudes seem also to arise here from angular oscillations of the azido groups. In this case, however, the largest contributions are normal to the mirror planes containing the N_{3} groups, directions in which the constraints of the nitrogen atoms are small.

To get a very rough estimate whether the asymmetry of the azido groups persists when thermal motions are taken into account, corrections were applied to the apparent intra-azido distances assuming the 'riding' motion approximation of Busing \& Levy (1964). The results, given within brackets above, indicate that the asymmetry is still significant, although more pronounced for the azido group with the free, non-coordinated end.

Professor Lars Gunnar Sillén, Royal Institute of Technology, and Professor Arne Magnéli, University of Stockholm, are thanked for their kind interest. The author wishes to express his appreciation to the members of the Division for Explosives, FOA 1, Sundbyberg, Sweden, especially to S.Lamnevik, for pleasant cooperation, Miss L. Bohson and Mr A. Boström for technical assistance. Professor J. M.Stewart, University of Maryland and Dr Jacob Danielsen, University of Aarhus, Denmark, are greatly thanked for their kindness in putting the program system ' X-ray- 63 ' at
my disposal and H . Göthe for help in adapting the system to the IBM 7090 computer of FOA, Stockholm. Many thanks are also due to Civ.ing. Dan Söderquist for his never failing willingness to help in many different ways, and to Drs Sten Andersson and Bo Holmberg for valuable discussions.

References

Agrell, I. (1966). Acta Chem. Scand. 20, 1281.
Brasseur, H. \& Pauling, L. (1938). J. Amer. Chem. Soc. 60, 2886,
Busing, W. R. \& Levy, H. A. (1964). Acta Cryst. 17, 142.
Curtius, T. \& Rissom, J. (1898). J. prakt. Chem. (2) 58, 294.

Gray, P. (1963). Quart. Rev. Chem. Soc. Lond. 17, 441.
Hamilton, W. C. (1965). Acta Cryst. 18, 502.
International Tables for X-ray Crystallography (1952). Vol. I. Birmingham: Kynoch Press.

International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Lamnevik, S. (1966). Personal communication.
Lamnevik, S. \& Söderquist, R. (1967). Symposium on Chemical Problems Connected with the Stability of Explosives, Stockholm. May 22-23. The present structure was also presented at the symposium.
Maycock, J. N. \& Grabenstein, D. E. (1966). Science, 152, 508.
Schlueter, A. W., Jacobson, R. A. \& Rundle, R. E. (1966). Inorg. Chem. 5, 277.

Söderquist, R. (1967). Unpublished work.
Stewart, J. M. (1964). Crystal Structure Calculations System ' X-ray-63'. Univ. of Maryland TR-64-6.
Straumanis, M. \& Cirulis, A. (1943). Z. anorg. allg. Chem. 251, 315.
Wells, A. F. (1962). Structural Inorganic Chemistry, p. 871. 3rd ed. London: Oxford Univ. Press.

